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LEVER TO THE EDITOR 

Anomalous decay of pair correlations for two-dimensional 
critical wetting 

A 0 Parryt 
H H Wills Physics Laboratory, University of Bristol, Bristol BS8 ITL, UK 

Received 20 December 1991 

Abstract. We develop a sealing theory for the decay of the spin-spin correlation function 
at two-dimensional (d = 2 )  wetting transitions in systems with short-ranged forces. For the 
criticzl wetting transition effective Hamiltonian results show that the scaling theory is 
obeyed but the decay of correlations is anomalous. In contrast, far the complete wetting 
transition, scaling and Omstein-Zernike theory are both valid. We argue that the anomalous 
decay is specific to zero bulk field critical wetting transitions and d = 2. 

The Wu anomaly ( W u  1966) refers to the anomalous asymptotic decay of the connected 
spin-spin correlation function G ( r )  in the zero field ( H = O ) ,  subcritical ( T <  T,) 
two-dimensional ( d  = 2) king model. Recall that according to the classical Omstein- 
Zemike (02)  theory (Omstein and Zernike 1918) G(r) should decay as 

for spin separations r 3 111 much greater than the correlation length g( 0, T ) .  Here 0 
refers to the angle of the spin separation vector r wRr an arbitrary axis. However exact 
analysis (Wu 1966, McCoy and Wu 1973)reveals an anomalous asymptotic decay law 
for T <  T, and H = 0: 

G(r)-e-2r/f(%T)/r2. (2) 

The exponent of the power in the decay law is 2 rather than the oz value f .  This 
breakdown of oz theory for the non-critical bulk correlation function is believed to 
be specific to d = 2, H = 0 and T < T, (Fisher and Camp 1971) and can be quantitatively 
understood in terms of the solid-on-solid/bubble model of Abraham (1983) or 
equivalently the random walk picture of Fisher (1984). Here we point out that similar 
anomalous decay is found in two dimensions at the strong-fluctuation regime critical 
wetting phase transition (for a review see e.g. Dietrich 1988). 

Consider a semi-infinite king plane with bulk field H and surface field H,. Let .Il 
and .I2 denote the usual nearest-neighbour exchange interactions in the z (normal to 

t Permanent address after I August 1992: Department of Mathematics, Imperial College, Landon SW7 282. 
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the surface) and x (parallel) directions respectively. For any (fixed) T <  T, the system 
exhibits a critical wetting transition when H ,  = H ;  (>O say) satisfies (Abraham 1980) 

with H = 0-. As t 3 ( H Y -  Hr)/H;-*O+ the thickness I of an adsorbed layer of upspins 
diverges continuously, i.e. I- t-’. with p.= 1. Associated with the divergence of I is 
the growth of large correlation lengths along ( gI1 - f-”II with vII = 2) and normal ( gL - t - ” ~  
with v, = 1) to the surface. Effective interfacial Hamiltonian models (see e.g. Burkhardt 
1981) correctly describe this critical behaviour. Moreover the universality hypothesis 
implies that the scaling properties of one- and two-point functions are the same for 
both the king and effective Hamiltonian models. This is known to be true for the 
energy density and energy-energy correlation function (KO and Abraham 1989, Burk- 
hardt 1989). For H ,  > H ;  (with T fixed) the complete wetting phase transition corres- 
ponds to the divergence of I, gL and 611 as H + 0-. Although the full Ising model has 
not been solved for this transition solid-on-solid (SOS) and continuum capillary-wave 
Hamiltonian studies (Abraham and Smith 1982, Lipowsky 1985) yield the analogous 
critical behaviour I-IHI-’;” (with &”=:), gL-IHI-”PO (with u?”=f) and gll- 
lHI-”To (with uTo=f). The values of these critical exponents for d = 2  critical and 
complete wetting as well as other quantities of interest, such as the shape of adsorbed 
oroprers can oe unuersiuuu using rariuu~ii waili arguriierira ( r i a n c ~  r x s t , .  fib S L ~ L C U  

earlier SOS model Hamiltonians and random walk approaches can also be used to 
explain the anomalous decay of G ( r )  in the bulk. This is suggestive that effective 
Hamiltonian models of two-dimensional wetting transitions may also reveal analogous 
anomalous decay. 

To place our results in context we develop a simple scaling theory of the form of 
G at wetting transitions. For simplicity here we largely confine our analysis to short- 
ranged forces in two dimensions, although it is easy to extend the scaling theory to 
account for long-ranged forces and arbitrary dimensionality. The critical and complete 
wetting transitions of the planar king model described above belong to the ( d  = 2) 
strongfluctuation (SFL) and weak-fluctuation (wm) scaling regimes, respectively. These 
scaling regimes characterize, quite generally, wetting transitions for d below the upper 
critical dimension d, (Lipowsky and Fisher 1987). In the.se fluctuation dominated 
regimes, hyperscaling and critical exponent relations suggest that l-gL so that the 
interface depins and delocalizes with the same critical exponent (Kroll et al 1985). On 
this basis we have argued (Parry 1991a, b) that the transverse moments of G are scaled 
functions. It is easy to extend this theory to G itself. We suppose that the spins are 
at distances zl, z2 from the wall respectively and are separated by the parallel displace- 
ment x , ~ =  x1 -x2. Following the Weeks (1984) scaling argument for interfacial 

distances can only appear in scaling form. For the d = 2 king model critical wetting 
transition we write the connected spin-spin correlation function as G = G(z,, 2 2 ;  X I Z )  

and postulate that G contains a singular scaling contribution 

(4) 

>-.~-..&- ..- L. ~.->...... > ... :--.._>_- ....,,. ,F:.L-- * n o r \  A .  .̂̂ .̂ _I 

..~.. deiocaiizaiion in a gravirarionai Beid, we assume that iii ihe SFL iiid WFL izgiiiiej 

G“’”8(z1, 2,; xI2) = Gic(z,t”l, z 2 t Y ~ ;  xl2t”!1) 

for H ,  < H: and h = [HI/  kBT = 0. If h # 0 then we must allow for an extra scaling 
variable hfCA in the RHS of (4). A is the gap exponent (A = 3 in d = 2). For the complete 
wetting transition the analogous scaling hypothesis is 

e S ( z , ,  z2;x12)= G~c(z lh’~o ,  z2h’y”; x12h’f”) ( 5 )  
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valid for h + 0 and I tlh-'lA + m. This latter condition means that we do not consider 
the subtle crossover effects associated with the limit HI + HPt for h # 0 (Parry and 
Evans 1992). 

For wetting transitions the exponent analogous to 7 = O  V d  (Lipowsky and Fisher 
1987) so it is natural to assume, in addition t.o the above scaling argument, that the 
transverse Fourier transform &zl, 2,; Q) defined (taking the continuum limit) in d = 2 
hY 

contains a simple oz contribution (Henderson 1991) Vz,r ,  

where eZ-(z,, z2) denotes the zeroth moment. In the complex Fourier plane the 
asymptotic decay of G,,(z,, z2; x,,) is determined by the simple poles st Q = *i/&. 
Combining (7) with the scaling hypothesis above we find 

for x12 /~11  + m. Note that we have written the dimension dependence of the power law 
explicitly. The scalinj functions @+.- are trivially related to the scaling properties of 
the zeroth moments GZ.-(z,,  z2) = ?-(zl, z,; 0) (Parry 1991a). ForSFLcritical wetting 
@-(U, U) has the short-distance expansion 

y v + O  (9a) I ( U u ) 2 ( d ~ 1 ) / ( 3 - d ) - l / u ,  

whilst for the WFL complete wetting transition 

I (Uu)(d+l)/(3--d) U, v + o .  

These SDE results should be valid regardless of whether the power law in the correct 

show that the oz prediction (8) is not obeyed in d = 2 for the SFL critical wetting 
transition. 

To calculate G ( z , , z 2 ;  x,,) for d = 2  critical and complete wetting we use the 
standard continuum effective Hamiltonian 

ajyiiipioiic expaiijioii of qz,, &; x,2j is oz-:ike oi :atei), $+;ow we 

with X( T) the surface stiffness coefficient and V( 1 )  the binding potential. More generally 
such Hamiltonians should describe correctly the critical behaviour and scaling proper- 
ties of interfaces above their roughening temperature (T> TR) and away from bulk 
criticality. Recall that T, = 0 in the d = 2 Ising model. The single-valued graph l ( x )  0 
separates regions of upspin and downspin and models the intrinsic interface that 
fluctuates near the surface at L = f = 0. For critical wetting in d = 2 with a contact 
binding potential and zero bulk field ( h  = 0)  G ( r l ,  2,; x12) can be calculated in closed 
form (Parry 1991a) using the standard SOS prescription for constructing pair correlations 
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from probability distributions (Burkhardt 1989): 

Equation (11) is of the scaling form ( 5 ) .  For large xIz>> tlI (11) implies the asymptotic 
decay 

which identifies the correct scaling function @-(U, U). The SDE of @- is in agreement 
with (9a); recall v L =  1 in d = 2 .  However the form of the xl, decay law (12) is 

have simple poles at Q = +i/tI1. The singularities in e( z, , z, ; Q )  are not isolated which 
in tum reflects the continuum of scattering state eigenfunctions in the Schrodinger 
problem (Burkhardt 1981). These subtleties do not affect the scaling and SDE properties 
of the transverse moments of G (Parry 1991a). These moments still exist away from 
the transition temperature. Further, their scaling properties follow immediately from 
the ansatz (4) which does not make any assumption about the form of G(z,, 2,; Q ) .  
If we allow for h # 0 it is straightforward to show that G(z,, z,; xI1) then has a pure 
exponential decay for large x,, consistent with the oz prediction in d = 2. The 
anomalous decay is therefore restricted to h = 0. 

For the case of complete wetting i.e. H,> H ;  and H+O-  G(z,, z,; xI2) has not 
been calculated in closed form but it is straightforward to show, using standard transfer 
matrix/integral techniques, that G(zl, z,; xI2) bas a scaling contribution of the form 
(Si. Xoreover ihe discreieness of ihe iransier iniegrai spri irh  iiecessariiy implies iiie 
oz decay 

ilnnma!ol?s and not ofthe nz type (8): This reflects the fact that @z:*  z:; 0) does not 

with 

@+(U, U)= j: ~ ~ ~ ~ ~ Y ~ + A ~ ~ A ~ ~ ~ , + ~ ~ ~ ~ ~ ~ Y , + A ~ ~ A ~ ~ Y ~ + ~ , ~  dy, dyz (136) 

where A. and A ,  are the largest and next largest zeros of the Airy function Ai. Equation 
(13) has the predicted SDE (96). The oz decay of correlations at complete wetting is 
similar to that found for the well studied problem of interfacial delocalization in a 
gravitational field (Weeks (1984) and references therein). 

We conclude that for systems with short-ranged forces in d = 2 oz is valid for 
complete wetting but invalid for critical wetting provided H = 0. In d = 3 we do  not 
expect any anomalous decay even in the case of critical wetting with short-ranged 
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forces (Lipowsky et al 1983, Brezin er al 1983, Fisher and Huse 1985). Using the 
matching procedure of Fisher and Huse (1985) it follows that it is possible to renormal- 
ize the binding potential until a Gaussian approximation to the renormalized Hamil- 
tonian is appropriate. This is a sufficient condition to ensure that G(z,, 2,; R )  (with 
R the parallel separation of the particles measured along the two dimensional substrate) 
decays as e-R''~~(R/tll)~t'2 for R >> ell. This is precisely the oz prediction. 

The author has benefited from conversations with R Evans, J R Henderson and J 
Hannay. This research was sponsored by the SERC, UK. 
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